FLO-PRED

Add Drug

Prices & Coupons

Couldn't find a medicine? Get a coupon which works for all.

Get Your Coupon

Dosage and administration

2 DOSAGE AND ADMINISTRATION Individualize dosing based on disease severity and patient response (2): Initial Dose: 5 mg to 60 mg of prednisolone (as 5.6 mg to 67 mg of prednisolone acetate) Maintenance Dose: Use lowest dosage that will maintain an adequate clinical response. Discontinuation: Withdraw gradually if discontinuing long-term or high-dose therapy Take with food to avoid gastrointestinal (GI) irritation. 2.1 Recommended Dosing Dosage of Flo-Pred should be individualized according to the severity of the disease and the response of the patient. For pediatric patients, the recommended dosage should be governed by the same considerations rather than strict adherence to the ratio indicated by age or body weight. The initial dosage of Flo-Pred may vary from 5 mg to 60 mg per day depending on the specific disease entity being treated. In situations of less severity lower doses will generally suffice while in selected patients higher initial doses may be required. The initial dosage should be maintained or adjusted until a satisfactory response is noted. If after a reasonable period there is a lack of satisfactory clinical response, Flo-Pred should be discontinued and the patient transferred to other appropriate therapy. It should be emphasized that dosage requirements are variable and must be individualized on the basis of the disease under treatment and the response of the patient. After a favorable response is noted, the proper maintenance dosage should be determined by decreasing the initial drug dosage in small decrements at appropriate time intervals until the lowest dosage which will maintain an adequate clinical response is reached. It should be kept in mind that constant monitoring is needed in regard to drug dosage. Included in the situations which may make dosage adjustments necessary are changes in clinical status secondary to remissions or exacerbations in the disease process, the patient's individual drug responsiveness, and the effect of patient exposure to stressful situations not directly related to the disease entity under treatment. In this latter situation it may be necessary to increase the dosage of Flo-Pred for a period of time consistent with the patient's condition. If a period of spontaneous remission occurs in a chronic condition, treatment should be discontinued. If after long-term therapy the drug is to be stopped, it is recommended that it be withdrawn gradually rather than abruptly. Multiple sclerosis In the treatment of acute exacerbations of multiple sclerosis, daily doses of 200 mg of prednisolone for a week followed by 80 mg every other day for one month have been shown to be effective. Pediatric The range of initial doses is 0.14 to 2 mg/kg/day in three or four divided doses (4 to 60 mg/m2/day). Nephrotic syndrome The standard regimen used to treat nephrotic syndrome in pediatric patients is 60 mg/m2/day given in three divided doses for 4 weeks, followed by 4 weeks of single dose alternate-day therapy at 40 mg/m2/day. Asthma The National Heart, Lung, and Blood Institute (NHLBI) recommended dosing for systemic prednisone, prednisolone or methylprednisolone in children whose asthma is uncontrolled by inhaled corticosteroids and long-acting bronchodilators is 1-2 mg/kg/day in single or divided doses. It is further recommended that short course, or "burst" therapy, be continued until a child achieves a peak expiratory flow rate of 80% of his or her personal best or symptoms resolve. This usually requires 3 to 10 days of treatment, although it can take longer. There is no evidence that tapering the dose after improvement will prevent a relapse. 2.2 Recommended Monitoring Blood pressure, body weight, routine laboratory studies, including two-hour postprandial blood glucose and serum potassium, and a chest X-ray should be obtained at regular intervals during prolonged therapy. Upper GI X-rays are desirable in patients with known or suspected peptic ulcer disease. 2.3 Corticosteroid Comparison Chart For the purpose of comparison, the following is the equivalent milligram dosage of the various glucocorticoids: Bethamethasone, 0.75 mg Paramethasone, 2 mg Cortisone, 25 mg Prednisolone, 5 mg Dexamethasone, 0.75 mg Prednisone, 5 mg Hydrocortisone, 20 mg Triamcinolone, 4 mg Methylprednisolone, 4 mg These dose relationships apply only to oral or intravenous administration of these compounds. When these substances or their derivatives are injected intramuscularly or into joint spaces, their relative properties may be greatly altered.

Bethamethasone, 0.75 mg Paramethasone, 2 mg
Cortisone, 25 mg Prednisolone, 5 mg
Dexamethasone, 0.75 mg Prednisone, 5 mg
Hydrocortisone, 20 mg Triamcinolone, 4 mg
Methylprednisolone, 4 mg

Pregnancy

8.1 Pregnancy Pregnancy Category D [see Warnings and Precautions (5.10) ] Multiple cohort and case controlled studies in humans suggest that maternal corticosteroid use during the first trimester increases the rate of cleft lip with or without cleft palate from about 1/1000 infants to 3-5/1000 infants. Two prospective case control studies showed decreased birth weight in infants exposed to maternal corticosteroids in utero. Flo-Pred was not formally evaluated for effects on reproduction. Published literature indicates prednisolone has been shown to be teratogenic in rats, rabbits, hamsters, and mice with increased incidence of cleft palate in offspring. In teratogenicity studies, cleft palate along with an elevation of fetal lethality (or increase in resorptions) and reductions in fetal body weight was seen in rats at maternal doses of 30 mg/kg (equivalent to 290 mg in a 60 kg individual based on mg/m2 body surface comparison) and higher. Cleft palate was observed in mice at a maternal dose of 20 mg/kg (equivalent to 100 mg in a 60 kg individual based on a mg/m2 comparison). Additionally, constriction of the ductus arteriosus has been observed in fetuses of pregnant rats exposed to prednisolone. In humans, the risk of decreased birth weight appears to be dose-related and may be minimized by administering lower corticosteroid doses. It is likely that underlying maternal conditions contribute to intrauterine growth restriction and decreased birth weight, but it is unclear to what extent these maternal conditions contribute to the increased risk of orofacial clefts. Prednisolone can cause fetal harm when used during pregnancy. Flo-Pred should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. If this drug is used during pregnancy, or if the patient becomes pregnant while using this drug, the patient should be apprised of the potential hazard to the fetus. Infants born to mothers who have received corticosteroids during pregnancy should be carefully observed for signs of hypoadrenalism.

Drug Interactions

7 DRUG INTERACTIONS Aminoglutethimide: Aminoglutethimide may lead to loss of corticosteroid-induced adrenal suppression. Amphotericin B: There have been cases reported in which concomitant use of Amphotericin B and hydrocortisone was followed by cardiac enlargement and congestive heart failure (see also Potassium depleting agents). Anticholinesterase agents: Concomitant use of anticholinesterase agents and corticosteroids may produce severe weakness in patients with myasthenia gravis. If possible, anticholinesterase agents should be withdrawn at least 24 hours before initiating corticosteroid therapy. Anticoagulant agents: Coadministration of corticosteroids and warfarin usually results in inhibition of response to warfarin, although there have been some conflicting reports. Therefore, coagulation indices should be monitored frequently to maintain the desired anticoagulant effect. Antidiabetic agents: Because corticosteroids may increase blood glucose concentrations, dosage adjustments of antidiabetic agents may be required. Antitubercular drugs: Serum concentrations of isoniazid may be decreased. CYP 3A4 inducers (e.g., barbiturates, phenytoin, carbamazepine, and rifampin): Drugs such as barbiturates, phenytoin, ephedrine, and rifampin, which induce hepatic microsomal drug metabolizing enzyme activity may enhance metabolism of prednisolone and require that the dosage of Flo-Pred be increased. CYP 3A4 inhibitors (e.g., ketoconazole, macrolide antibiotics): Ketoconazole has been reported to decrease the metabolism of certain corticosteroids by up to 60% leading to an increased risk of corticosteroid side effects. Cholestyramine: Cholestyramine may increase the clearance of corticosteroids. Cyclosporine: Increased activity of both cyclosporine and corticosteroids may occur when the two are used concurrently. Convulsions have been reported with concurrent use. Digitalis: Patients on digitalis glycosides may be at increased risk of arrhythmias due to hypokalemia. Estrogens, including oral contraceptives: Estrogens may decrease the hepatic metabolism of certain corticosteroids thereby increasing their effect. NSAlDs including aspirin and salicylates: Concomitant use of aspirin or other non-steroidal anti-inflammatory agents and corticosteroids increases the risk of gastrointestinal side effects. Aspirin should be used cautiously in conjunction with corticosteroids in hypoprothrombinemia. The clearance of salicylates may be increased with concurrent use of corticosteroids. Potassium depleting agents (e.g., diuretics, Amphotericin B): When corticosteroids are administered concomitantly with potassium-depleting agents, patients should be observed closely for development of hypokalemia. Skin tests: Corticosteroids may suppress reactions to skin tests. Toxoids and live or inactivated vaccines: Due to inhibition of antibody response, patients on prolonged corticosteroid therapy may exhibit a diminished response to toxoids and live or inactivated vaccines. Corticosteroids may also potentiate the replication of some organisms contained in live attenuated vaccines. Anticoagulant Agents: May enhance or diminish anticoagulant effects. Monitor coagulation indices. (7) Antidiabetic Agents: May increase blood glucose concentrations. Dose adjustments of antidiabetic agents may be required. (7) CYP 3A4 inducers and inhibitors: May, respectively, increase or decrease clearance of corticosteroids, necessitating dose adjustment.(7 ) Cyclosporine: Increase in activity of both, cyclosporine and corticosteroid when administered concurrently. Convulsions have been reported with concurrent use. (7) NSAIDs including aspirin and salicylates: Increased risk of gastrointestinal side effects. (7)

Indications And Usage

1 INDICATIONS AND USAGE Flo-Pred (prednisolone acetate oral suspension) is indicated in the treatment of the following diseases or conditions: Flo-Pred is a corticosteroid indicated as an anti-inflammatory or immunosuppressive agent for certain allergic, dermatologic, gastrointestinal, hematologic, ophthalmologic, nervous system, renal, respiratory, rheumatologic, specific infectious diseases or conditions and organ transplantation (1) for the treatment of certain endocrine conditions (1) for palliation of certain neoplastic conditions (1) 1.1 Allergic Conditions Control of severe or incapacitating allergic conditions intractable to adequate trials of conventional treatment in adults and pediatric populations with: Atopic dermatitis Drug hypersensitivity reactions Seasonal or perennial allergic rhinitis Serum sickness 1.2 Dermatologic Diseases Bullous dermatitis herpetiformis Contact dermatitis Exfoliative erythroderma Mycosis fungoides Pemphigus Severe erythema multiforme (Stevens-Johnson syndrome) 1.3 Endocrine Conditions Congenital adrenal hyperplasia Hypercalcemia of malignancy Nonsuppurative thyroiditis Primary or secondary adrenocortical insufficiency: hydrocortisone or cortisone is the first choice: synthetic analogs may be used in conjunction with mineralocorticoids where applicable 1.4 Gastrointestinal Diseases During acute episodes in: Crohn's Disease Ulcerative colitis 1.5 Hematologic Diseases Acquired (autoimmune) hemolytic anemia Diamond-Blackfan anemia Idiopathic thrombocytopenic purpura in adults Pure red cell aplasia Secondary thrombocytopenia in adults 1.6 Neoplastic Conditions For the treatment of: Acute leukemia Aggressive lymphomas 1.7 Nervous System Conditions Acute exacerbations of multiple sclerosis Cerebral edema associated with primary or metastatic brain tumor, craniotomy or head injury 1.8 Ophthalmic Conditions Sympathetic ophthalmia Uveitis and ocular inflammatory conditions unresponsive to topical steroids 1.9 Conditions Related to Organ Transplantation Acute or chronic solid organ rejection 1.10 Pulmonary Diseases Acute exacerbations of chronic obstructive pulmonary disease (COPD) Allergic bronchopulmonary aspergillosis Aspiration pneumonitis Asthma Fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate chemotherapy Hypersensitivity pneumonitis Idiopathic bronchiolitis obliterans with organizing pneumonia Idiopathic eosinophilic pneumonias Idiopathic pulmonary fibrosis Pneumocystis carinii pneumonia (PCP) associated with hypoxemia occurring in an HIV(+) individual who is also under treatment with appropriate anti-PCP antibiotics. Symptomatic sarcoidosis 1.11 Renal Conditions To induce a diuresis or remission of proteinuria in nephrotic syndrome, without uremia, of the idiopathic type or that due to lupus erythematosus 1.12 Rheumatologic Conditions As adjunctive therapy for short-term administration (to tide the patient over an acute episode or exacerbation) in: Acute gouty arthritis During an exacerbation or as maintenance therapy in selected cases of: Ankylosing spondylitis Dermatomyositis/polymyositis Polymyalgia rheumatica Psoriatic arthritis Relapsing polychondritis Rheumatoid arthritis, including juvenile rheumatoid arthritis (selected cases may require low dose maintenance therapy) Sjogren's syndrome Systemic lupus erythematosus Vasculitis 1.13 Specific Infectious Diseases Trichinosis with neurologic or myocardial involvement. Tuberculous meningitis with subarachnoid block or impending block used concurrently with appropriate antituberculous chemotherapy.

Warnings And Cautions

5 WARNINGS AND PRECAUTIONS Hypothalamic-pituitary-adrenal (HPA) axis suppression, Cushing's syndrome and hyperglycemia: Monitor patients for these conditions with chronic use. Taper doses gradually for withdrawal after chronic use. (5.1) Infections: Increased susceptibility to new infection and increased risk of exacerbation, dissemination, or reactivation of latent infection. Signs and symptoms of infection may be masked (5.2) Elevated blood pressure, salt and water retention and hypokalemia: Monitor blood pressure and sodium, potassium serum levels (5.3) GI perforation: increased risk in patients with certain GI disorders. Signs and symptoms may be masked (5.4) Behavioral and mood disturbances: May Include euphoria, insomnia, mood swings, personality changes, severe depression, and psychosis. Existing conditions may be aggravated. (5.5) Decreases in bone density: Monitor bone density in patients receiving long-term corticosteroid therapy. (5.6) Ophthalmic effects: May include cataracts, infections and glaucoma. Monitor intraocular pressure if corticosteroid therapy is continued for more than 6 weeks.(5.7) Live or live attenuated vaccines: Do not administer to patients receiving immunosuppressive doses of corticosteroids. (5.8) Negative effects on growth and development: Monitor pediatric patients on long-term corticosteroid therapy. (5.9) Use in pregnancy: Fetal harm can occur with first trimester use. Apprise women of potential harm to the fetus. (5.10) 5.1 Alterations in Endocrine Function Hypothalamic-pituitary-adrenal (HPA) axis suppression, Cushing's syndrome, and hyperglycemia. Monitor patients for these conditions with chronic use. Corticosteroids can produce reversible HPA axis suppression with the potential for glucocorticosteroid insufficiency after withdrawal of treatment. Drug induced secondary adrenocortical insufficiency may be minimized by gradual reduction of dosage. This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted. Since mineralocorticoid secretion may be impaired, salt and/or a mineralocorticoid should be administered concurrently. Mineralocorticoid supplementation is of particular importance in infancy. Metabolic clearance of corticosteroids is decreased in hypothyroid patients and increased in hyperthyroid patients. Changes in thyroid status of the patient may necessitate adjustment in dosage. 5.2 Increased Risks Related to Infections Corticosteroids may increase the risks related to infections with any pathogen, including viral, bacterial, fungal, protozoan, or helminthic infections. The degree to which the dose, route and duration of corticosteroid administration correlates with the specific risks of infection is not well characterized, however, with increasing doses of corticosteroids, the rate of occurrence of infectious complications increases. Corticosteroids may mask some signs of infection and may reduce resistance to new infections. Corticosteroids may exacerbate infections and increase risk of disseminated infection. The use of Flo-Pred in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate antituberculous regimen. Chickenpox and measles can have a more serious or even fatal course in non-immune children or adults on corticosteroids. In children or adults who have not had these diseases, particular care should be taken to avoid exposure. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. If chickenpox develops, treatment with antiviral agents may be considered. Corticosteroids should be used with great care in patients with known or suspected Strongyloides (threadworm) infestation. In such patients, corticosteroid-induced immunosuppression may lead to Strongyloides hyperinfection and dissemination with widespread larval migration, often accompanied by severe enterocolitis and potentially fatal gram-negative septicemia. Corticosteroids may exacerbate systemic fungal infections and therefore should not be used in the presence of such infections unless they are needed to control drug reactions. Corticosteroids may increase risk of reactivation or exacerbation of latent infection. If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur. During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis. Corticosteroids may activate latent amebiasis. Therefore, it is recommended that latent or active amebiasis be ruled out before initiating corticosteroid therapy in any patient who has spent time in the tropics or in any patient with unexplained diarrhea. Corticosteroids should not be used in cerebral malaria. 5.3 Alterations in Cardiovascular/Renal Function Corticosteroids can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium and calcium. These effects are less likely to occur with the synthetic derivatives except when used in large doses. Dietary salt restriction and potassium supplementation may be necessary. These agents should be used with caution in patients with hypertension, congestive heart failure, or renal insufficiency. Literature reports suggest an association between use of corticosteroids and left ventricular free wall rupture after a recent myocardial infarction; therefore, therapy with corticosteroids should be used with caution in these patients. 5.4 Use in Patients with Gastrointestinal Disorders There is an increased risk of gastrointestinal perforation in patients with certain GI disorders. Signs of GI perforation, such as peritoneal irritation, may be masked in patients receiving corticosteroids. Corticosteroids should be used with caution if there is a probability of impending perforation, abscess or other pyogenic infections; diverticulitis; fresh intestinal anastomoses; and active or latent peptic ulcer. 5.5 Behavioral and Mood Disturbances Corticosteroid use may be associated with central nervous system effects ranging from euphoria, insomnia, mood swings, personality changes, and severe depression, to frank psychotic manifestations. Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids. 5.6 Decrease in Bone Density Corticosteroids decrease bone formation and increase bone resorption both through their effect on calcium regulation (i.e., decreasing absorption and increasing excretion) and inhibition of osteoblast function. This, together with a decrease in the protein matrix of the bone secondary to an increase in protein catabolism, and reduced sex hormone production, may lead to inhibition of bone growth in children and adolescents and the development of osteoporosis at any age. Special consideration should be given to patients at increased risk of osteoporosis (i.e., postmenopausal women) before initiating corticosteroid therapy and bone density should be monitored in patients on long-term corticosteroid therapy. 5.7 Ophthalmic Effects Prolonged use of corticosteroids may produce posterior subcapsular cataracts, glaucoma with possible damage to the optic nerves, and may enhance the establishment of secondary ocular infections due to fungi or viruses. The use of oral corticosteroids is not recommended in the treatment of optic neuritis and may lead to an increase in the risk of new episodes. Intraocular pressure may become elevated in some individuals. If steroid therapy is continued for more than 6 weeks, intraocular pressure should be monitored. Patients with Ocular Herpes Simplex Corticosteroids should be used cautiously in patients with ocular herpes simplex because of possible corneal perforation. Corticosteroids should not be used in active ocular herpes simplex. 5.8 Vaccination Administration of live or live attenuated vaccines is contraindicated in patients receiving immunosuppressive doses of corticosteroids. Killed or inactivated vaccines may be administered, however, the response to such vaccines can not be predicted. Immunization procedures may be undertaken in patients who are receiving corticosteroids as replacement therapy, e.g., for Addison's disease. While on corticosteroid therapy, patients should not be vaccinated against smallpox. Other immunization procedures should not be undertaken in patients who are on corticosteroids, especially on high dose, because of possible hazards of neurological complications and a lack of antibody response. 5.9 Effect on Growth and Development Long-term use of corticosteroids can have negative effects on growth and development in children. Growth and development of pediatric patients on prolonged corticosteroid therapy should be carefully monitored. 5.10 Use in Pregnancy Prednisolone can cause fetal harm when administered to a pregnant woman. Human and animal studies suggest that use of corticosteroids during the first trimester of pregnancy is associated with an increased risk of orofacial clefts, intrauterine growth restriction and decreased birth weight. If this drug is used during pregnancy, or if the patient becomes pregnant while using this drug, the patient should be apprised of the potential hazard to the fetus. [see Use in Specific Populations(8.1) ]. 5.11 Neuromuscular Effects Although controlled clinical trials have shown corticosteroids to be effective in speeding the resolution of acute exacerbations of multiple sclerosis, they do not show that they affect the ultimate outcome or natural history of the disease. The studies do show that relatively high doses of corticosteroids are necessary to demonstrate a significant effect. [see Dosage and Administration (2) ]. An acute myopathy has been observed with the use of high doses of corticosteroids, most often occurring in patients with disorders of neuromuscular transmission (e.g., myasthenia gravis), or in patients receiving concomitant therapy with neuromuscular blocking drugs (e.g., pancuronium). This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years. 5.12 Kaposi's Sarcoma Kaposi's sarcoma has been reported to occur in patients receiving corticosteroid therapy, most often for chronic conditions. Discontinuation of corticosteroids may result in clinical improvement.

Overdosage

10 OVERDOSAGE The effects of accidental ingestion of large quantities of prednisolone over a very short period of time have not been reported, but prolonged use of the drug can produce mental symptoms, moon face, abnormal fat deposits, fluid retention, excessive appetite, weight gain, hypertrichosis, acne, striae, ecchymosis, increased sweating, pigmentation, dry scaly skin, thinning scalp hair, increased blood pressure, tachycardia, thrombophlebitis, decreased resistance to infection, negative nitrogen balance with delayed bone and wound healing, headache, weakness, menstrual disorders, accentuated menopausal symptoms, neuropathy, fractures, osteoporosis, peptic ulcer, decreased glucose tolerance, hypokalemia, and adrenal insufficiency. Hepatomegaly and abdominal distention have been observed in children. Treatment of acute overdosage is by immediate gastric lavage or emesis followed by supportive and symptomatic therapy. For chronic overdosage in the face of severe disease requiring continuous steroid therapy the dosage of prednisolone may be reduced only temporarily, or alternate day treatment may be introduced.

Adverse Reactions

6 ADVERSE REACTIONS Common adverse reactions for corticosteroids include fluid retention, alteration in glucose tolerance, elevation in blood pressure, behavioral and mood changes, increased appetite and weight gain. Allergic Reactions: Anaphylactoid reaction, anaphylaxis, angioedema Cardiovascular: Bradycardia, cardiac arrest, cardiac arrhythmias, cardiac enlargement, circulatory collapse, congestive heart failure, fat embolism, hypertension, hypertrophic cardiomyopathy in premature infants, myocardial rupture following recent myocardial infarction, pulmonary edema, syncope, tachycardia, thromboembolism, thrombophlebitis, vasculitis Dermatologic: Acne, allergic dermatitis, cutaneous and subcutaneous atrophy, dry scalp, edema, facial erythema, hyper or hypo-pigmentation, impaired wound healing, increased sweating, petechiae and ecchymoses, rash, sterile abscess, striae, suppressed reactions to skin tests, thin fragile skin, thinning scalp hair, urticaria Endocrine: Abnormal fat deposits, decreased carbohydrate tolerance, development of Cushingoid state, hirsutism, manifestations of latent diabetes mellitus and increased requirements for insulin or oral hypoglycemic agents in diabetics, menstrual irregularities, moon facies, secondary adrenocortical and pituitary unresponsiveness (particularly in times of stress, as in trauma, surgery or illness), suppression of growth in children Fluid and Electrolyte Disturbances: Fluid retention, potassium loss, hypertension, hypokalemic alkalosis, sodium retention Gastrointestinal: Abdominal distention, elevation in serum liver enzymes levels (usually reversible upon discontinuation), hepatomegaly, hiccups, malaise, nausea, pancreatitis, peptic ulcer with possible perforation and hemorrhage, ulcerative esophagitis General: Increased appetite and weight gain Metabolic: Negative nitrogen balance due to protein catabolism Musculoskeletal: Aseptic necrosis of femoral and humeral heads, charcot-like arthropathy, loss of muscle mass, muscle weakness, osteoporosis, pathologic fracture of long bones, steroid myopathy, tendon rupture, vertebral compression fractures Neurological: Arachnoiditis, convulsions, depression, emotional instability, euphoria, headache, increased intracranial pressure with papilledema (pseudo-tumor cerebri) usually following discontinuation of treatment, insomnia, meningitis, mood swings, neuritis, neuropathy, paraparesis/paraplegia, paresthesia, personality changes, sensory disturbances, vertigo Ophthalmic: Exophthalmos, glaucoma, increased intraocular pressure, and posterior subcapsular cataracts Reproductive: Alteration in motility and number of spermatozoa Common adverse reactions for corticosteroids include fluid retention, alteration in glucose tolerance, elevation in blood pressure, behavioral and mood changes, increased appetite and weight gain. (6) To report SUSPECTED ADVERSE REACTIONS, contact Taro Pharmaceuticals U.S.A., Inc. at 1-888-827-6872 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

Mechanism

12.1 Mechanism of Action Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogs such as prednisolone are primarily used for their potent anti-inflammatory effects in disorders of many organ systems. Glucocorticoids such as prednisolone cause profound and varied metabolic effects. In addition, they modify the body's immune responses to diverse stimuli. Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones' normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Depressed production of eosinophils and lymphocytes occurs, but erythropoiesis and production of polymorphonuclear leukocytes are stimulated. Inflammatory processes (edema, fibrin deposition, capillary dilatation, migration of leukocytes and phagocytosis) and the later stages of wound healing (capillary proliferation, deposition of collagen, cicatrization) are inhibited. Prednisolone can stimulate secretion of various components of gastric juice. Suppression of the production of corticotropin may lead to suppression of endogenous corticosteroids. Prednisolone has slight mineralocorticoid activity, whereby entry of sodium into cells and loss of intracellular potassium is stimulated. This is particularly evident in the kidney, where rapid ion exchange leads to sodium retention and hypertension.

Contraindications

4 CONTRAINDICATIONS Flo-Pred is contraindicated in patients who are hypersensitive to corticosteroids such as prednisolone, or any components of this product. Rare instances of anaphylactoid reactions have occurred in patients receiving corticosteroid therapy. Hypersensitivity to prednisolone or any component of this product. (4)

Nursing Mothers

8.3 Nursing Mothers Prednisolone is secreted in human milk. Reports suggest that prednisolone concentrations in human milk are 5 to 25% of maternal serum levels, and that total infant daily doses are small, about 0.14% of the maternal daily dose. The risk of infant exposure to prednisolone through breast milk should be weighed against the known benefits of breastfeeding for both the mother and baby. Caution should be exercised when prednisolone is administered to a nursing woman. If prednisolone must be prescribed to a breastfeeding mother, the lowest dose should be prescribed to achieve the desired clinical effect. High doses of corticosteroids for long periods could potentially produce problems in infant growth and development and interfere with endogenous corticosteroid production. Breastfeeding women using corticosteroids should be encouraged to take their dose immediately after breastfeeding at the time of day when the baby usually has the longest interval between feeds. This will minimize infant exposure to drug.