PRAVASTATIN SODIUM
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins)
Prices & Coupons
Pharmacy | |||
---|---|---|---|
133RD STREET PHARMACY INC
1473 Amsterdam Ave |
$13.73 |
Get Your Coupon | |
AHF PHARMACY
475 Atlantic Ave |
$13.73 |
Get Your Coupon | 1 more results found for AIDS HEALTHCARE FOUNDATION |
AHF PHARMACY
2307 Astoria Blvd |
$13.73 |
Get Your Coupon | |
ALICE RX CORP
231 S 3 Rd St |
$13.73 |
Get Your Coupon | 24 more results found for PHARMACY FIRST |
DANNY'S PHARMACY II
110 W End Ave |
$13.73 |
Get Your Coupon | |
NORTH HUDSON COMMUNITY PHARMACY
5301 Broadway |
$13.73 |
Get Your Coupon | |
PILL CLOUD RX
6010 Queens Blvd |
$13.73 |
Get Your Coupon | |
A.M. PHARMACY II, INC
223 Grand Street |
$13.83 |
Get Your Coupon | 28 more results found for ALIGNRX (783) |
HUDSON PHARMACY
65 08 Roosevelt Avenue |
$13.83 |
Get Your Coupon | |
1699 FANCY PHARMACY INC
132 Allen St |
$14.33 |
Get Your Coupon | 77 more results found for ELEVATE PROVIDER NETWORK 904 |
HARRY'S PHARMACY DEPT.
7917 Kennedy Blvd |
$14.33 |
Get Your Coupon | 227 more results found for LEADER DRUG STORES INC |
LUZATO MEDICAL GROUP PC
50 E 42 Nd St Rm 508 |
$14.33 |
Get Your Coupon | 8 more results found for ELEVATE PROVIDER NETWORK 959 |
QUICK RX
909 Columbus Ave |
$14.33 |
Get Your Coupon | 1 more results found for MHA LONG TERM CARE NETWORK |
137 MOTT PHARMACY, INC.
137 Mott St |
$14.83 |
Get Your Coupon | 42 more results found for HEALTH MART ATLAS 605 |
79TH STREET PHARMACY
215 W 79 Th St |
$14.83 |
Get Your Coupon | 51 more results found for HEALTH MART ATLAS 630 |
ECHO CARE SPECIALTY PHARMACY
260 Broadway |
$14.83 |
Get Your Coupon | |
ACME PHARMACY #1083
125 18 Th St |
$15.31 |
Get Your Coupon | 1 more results found for NEW ALBERTSONS LP |
A PLUS PHARMACY
634 Summit Ave |
$15.33 |
Get Your Coupon | 31 more results found for EPIC PHARMACY NETWORK INC |
COSTCO PHARMACY #1062
517 E 117 Th St |
$18.01 |
Get Your Coupon | 1 more results found for COSTCO PHARMACIES |
APICHA HEALTH CENTER PHARMACY
400 Broadway |
$19.83 |
Get Your Coupon | 4 more results found for MAXORXPRESS |
CHELSEA ROYAL CARE PHARMACY, INC.
154 9 Th Ave |
$19.83 |
Get Your Coupon | |
CHRONOS PHARMACY
30 96 36 Th Street |
$19.83 |
Get Your Coupon | |
COLUMBIA DRUGS
55 Columbia St |
$19.83 |
Get Your Coupon | |
CONTIGO PHARMACY
3510 Bergenline Ave |
$19.83 |
Get Your Coupon | 23 more results found for GERIMED LTC NETWORK INC |
ROR MADISON PHARMACY INC
1636 Madison Ave |
$19.83 |
Get Your Coupon | |
RX CENTER
2325 1 St Ave |
$19.83 |
Get Your Coupon | |
ST JOHNS PHARMACY
2980 John F Kennedy Blvd |
$19.83 |
Get Your Coupon | |
TURTLE BAY CHEMISTS
901 2 Nd Ave |
$19.83 |
Get Your Coupon | |
UMR PHARMACY & SURGICAL INC
437 Central Ave |
$19.83 |
Get Your Coupon | |
COMMUNITY, A WALGREENS PHARMACY #16463
29 W 116 Th St |
$25.28 |
Get Your Coupon | 104 more results found for WALGREENS DRUG STORE |
OPTUM PHARMACY 706 INC
3030 47 Th Avenue |
$25.28 |
Get Your Coupon | |
RITE AID PHARMACY 01225
534 Hudson Street |
$26.24 |
Get Your Coupon | 8 more results found for RITE AID CORPORATION |
WALMART PHARMACY 10-3520
400 Park Place |
$31.76 |
Get Your Coupon | 1 more results found for WALMART STORES INC |
CARE PLUS CVS/PHARMACY #02546
1200 Harbor Blvd |
$45.40 |
Get Your Coupon | 76 more results found for CVS PHARMACY INC |
CVS PHARMACY # 17820
10 Union Sq E |
$45.40 |
Get Your Coupon | 9 more results found for CVS PHARMACY IN TARGET |
CVS PHARMACY #02919
126 Eighth Ave |
$45.40 |
Get Your Coupon | |
Pregnancy
4.3 Pregnancy Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. Cholesterol and other products of cholesterol biosynthesis are essential components for fetal development (including synthesis of steroids and cell membranes). Since statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, they are contraindicated during pregnancy and in nursing mothers. PRAVASTATIN SHOULD BE ADMINISTERED TO WOMEN OF CHILDBEARING AGE ONLY WHEN SUCH PATIENTS ARE HIGHLY UNLIKELY TO CONCEIVE AND HAVE BEEN INFORMED OF THE POTENTIAL HAZARDS. If the patient becomes pregnant while taking this class of drug, therapy should be discontinued immediately and the patient apprised of the potential hazard to the fetus [see Use in Specific Populations (8.1) ]. and 8.1 Pregnancy Teratogenic Effects Pregnancy Category X [See Contraindications (4.3) .] Safety in pregnant women has not been established. Available data in women inadvertently taking pravastatin while pregnant do not suggest any adverse clinical events. However, there are no adequate and well-controlled studies in pregnant women. Therefore, it is not known whether pravastatin can cause fetal harm when administered to a pregnant woman or can affect reproductive capacity. Pravastatin should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus and patients have been informed of the potential hazards. Rare reports of congenital anomalies have been received following intrauterine exposure to other statins. In a review2 of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or lovastatin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed what would be expected in the general population. The number of cases is adequate to exclude a ≥3- to 4-fold increase in congenital anomalies over the background incidence. In 89% of the prospectively followed pregnancies, drug treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. As safety in pregnant women has not been established and there is no apparent benefit to therapy with pravastatin sodium during pregnancy [see Contraindications (4.3) ], treatment should be immediately discontinued as soon as pregnancy is recognized. Pravastatin sodium should be administered to women of childbearing potential only when such patients are highly unlikely to conceive and have been informed of the potential hazards. Pravastatin was neither embryolethal nor teratogenic in rats at doses up to 1000 mg/kg daily or in rabbits at doses of up to 50 mg/kg daily. These doses resulted in 10 times (rabbit) or 120 times (rat) the human exposure at 80 mg/day maximum recommended human dose (MRHD) based on surface area (mg/m2). In pregnant rats given oral gavage doses of 4, 20, 100, 500, and 1000 mg/kg/day from gestation days 7 through 17 (organogenesis) increased mortality of offspring and skeletal anomalies were observed at 100 mg/kg/day systemic exposure, 10 times the human exposure at 80 mg/day MRHD based on body surface area (mg/m2 ). In pregnant rats given oral gavage doses of 10, 100, and 1000 mg/kg/day from gestation day 17 through lactation day 21 (weaning) increased mortality of offspring and developmental delays were observed at 100 mg/kg/day systemic exposure, 12 times the human exposure at 80 mg/day MRHD based on body surface area (mg/m2 ).
Drug Interactions
7 DRUG INTERACTIONS For the concurrent therapy of either cyclosporine, fibrates, niacin (nicotinic acid), or erythromycin, the risk of myopathy increases [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3) ]. 1.Concomitant lipid-lowering therapies : use with fibrates or lipid-modifying doses (≥1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with pravastatin sodium. (7) 2.Cyclosporine: combination increases exposure. Limit pravastatin to 20 mg once daily. (2.5, 7.1) 3.Clarithromycin: combination increases exposure. Limit pravastatin to 40 mg once daily. (2.6, 7.2) 7.1 Cyclosporine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of cyclosporine. Limit pravastatin to 20 mg once daily for concomitant use with cyclosporine [see Dosage and Administration (2.5) , Warnings and Precautions (5.1) , and Clinical Pharmacology (12.3) ]. 7.2 Clarithromycin The risk of myopathy/rhabdomyolysis is increased with concomitant administration of clarithromycin. Limit pravastatin to 40 mg once daily for concomitant use with clarithromycin [see Dosage and Administration (2.6) , Warnings and Precautions (5.1) , and Clinical Pharmacology (12.3) ]. 7.3 Colchicine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of colchicine [see Warnings and Precautions (5.1) ]. 7.4 Gemfibrozil Due to an increased risk of myopathy/rhabdomyolysis when HMG-CoA reductase inhibitors are coadministered with gemfibrozil, concomitant administration of pravastatin with gemfibrozil should be avoided [see Warnings and Precautions (5.1) ]. 7.5 Other Fibrates Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concurrent administration of other fibrates, pravastatin should be administered with caution when used concomitantly with other fibrates [see Warnings and Precautions (5.1) ]. 7.6 Niacin The risk of skeletal muscle effects may be enhanced when pravastatin is used in combination with niacin; a reduction in pravastatin dosage should be considered in this setting [see Warnings and Precautions (5.1) ].
Indications And Usage
1 INDICATIONS AND USAGE Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. Pravastatin sodium is an HMG-CoA reductase inhibitor (statin) indicated as an adjunctive therapy to diet to: 1.Reduce the risk of MI, revascularization, and cardiovascular mortality in hypercholesterolemic patients without clinically evident CHD. (1.1) 2.Reduce elevated Total-C, LDL-C, ApoB, and TG levels and to increase HDL-C in patients with primary hypercholesterolemia and mixed dyslipidemia. (1.2) 3.Reduce elevated serum TG levels in patients with hypertriglyceridemia. (1.2) 4.Treat patients with primary dysbetalipoproteinemia who are not responding to diet. (1.2) 5.Treat children and adolescent patients ages 8 years and older with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy. (1.2) Limitations of use: 1.Pravastatin sodium has not been studied in Fredrickson Types I and V dyslipidemias. (1.3) 1.1 Prevention of Cardiovascular Disease In hypercholesterolemic patients without clinically evident coronary heart disease (CHD), pravastatin sodium tablets, USP are indicated to: •reduce the risk of myocardial infarction (MI). •reduce the risk of undergoing myocardial revascularization procedures. •reduce the risk of cardiovascular mortality with no increase in death from non-cardiovascular causes. 1.2 Hyperlipidemia Pravastatin sodium tablets, USP are indicated: •as an adjunct to diet to reduce elevated total cholesterol (Total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and triglyceride (TG) levels and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hypercholesterolemia and mixed dyslipidemia (Fredrickson Types IIa and IIb).1 •as an adjunct to diet for the treatment of patients with elevated serum TG levels (Fredrickson Type IV). •for the treatment of patients with primary dysbetalipoproteinemia (Fredrickson Type III) who do not respond adequately to diet. •as an adjunct to diet and lifestyle modification for treatment of heterozygous familial hypercholesterolemia (HeFH) in children and adolescent patients ages 8 years and older if after an adequate trial of diet the following findings are present: a. LDL-C remains ≥190 mg/dL or • there is a positive family history of premature cardiovascular disease (CVD) or 1.3 Limitations of Use Pravastatin sodium has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).
Clinical Studies
14 CLINICAL STUDIES 14.1 Prevention of Coronary Heart Disease In the Pravastatin Primary Prevention Study (WOS),3 the effect of pravastatin sodium on fatal and nonfatal CHD was assessed in 6595 men 45 to 64 years of age, without a previous MI, and with LDL-C levels between 156 to 254 mg/dL (4 to 6.7 mmol/L). In this randomized, double-blind, placebo-controlled study, patients were treated with standard care, including dietary advice, and either pravastatin sodium 40 mg daily (N=3302) or placebo (N=3293) and followed for a median duration of 4.8 years. Median (25th, 75th percentile) percent changes from baseline after 6 months of pravastatin treatment in Total-C, LDL-C, TG, and HDL-C were −20.3 (−26.9, −11.7), −27.7 (−36.0, −16.9), −9.1 (−27.6, 12.5), and 6.7 (−2.1, 15.6), respectively. Pravastatin sodium significantly reduced the rate of first coronary events (either CHD death or nonfatal MI) by 31% (248 events in the placebo group [CHD death=44, nonfatal MI=204] versus 174 events in the pravastatin sodium group [CHD death=31, nonfatal MI=143], p=0.0001 [see figure below]). The risk reduction with pravastatin sodium was similar and significant throughout the entire range of baseline LDL cholesterol levels. This reduction was also similar and significant across the age range studied with a 40% risk reduction for patients younger than 55 years and a 27% risk reduction for patients 55 years and older. The Pravastatin Primary Prevention Study included only men, and therefore it is not clear to what extent these data can be extrapolated to a similar population of female patients. Pravastatin sodium also significantly decreased the risk for undergoing myocardial revascularization procedures (coronary artery bypass graft [CABG] surgery or percutaneous transluminal coronary angioplasty [PTCA]) by 37% (80 vs 51 patients, p=0.009) and coronary angiography by 31% (128 vs 90, p=0.007). Cardiovascular deaths were decreased by 32% (73 vs 50, p=0.03) and there was no increase in death from non-cardiovascular causes. pravastatin-fig1 14.2 Secondary Prevention of Cardiovascular Events In the PLAC I4 study, the effect of pravastatin therapy on coronary atherosclerosis was assessed by coronary angiography in patients with coronary disease and moderate hypercholesterolemia (baseline LDL-C range: 130 to 190 mg/dL). In this double-blind, multicenter, controlled clinical trial, angiograms were evaluated at baseline and at 3 years in 264 patients. Although the difference between pravastatin and placebo for the primary endpoint (per-patient change in mean coronary artery diameter) and 1 of 2 secondary endpoints (change in percent lumen diameter stenosis) did not reach statistical significance, for the secondary endpoint of change in minimum lumen diameter, statistically significant slowing of disease was seen in the pravastatin treatment group (p=0.02). In the REGRESS5 study, the effect of pravastatin on coronary atherosclerosis was assessed by coronary angiography in 885 patients with angina pectoris, angiographically documented coronary artery disease, and hypercholesterolemia (baseline total cholesterol range: 160 to 310 mg/dL). In this double-blind, multicenter, controlled clinical trial, angiograms were evaluated at baseline and at 2 years in 653 patients (323 treated with pravastatin). Progression of coronary atherosclerosis was significantly slowed in the pravastatin group as assessed by changes in mean segment diameter (p=0.037) and minimum obstruction diameter (p=0.001). Analysis of pooled events from PLAC I, PLAC II,6 REGRESS, and KAPS7 studies (combined N=1891) showed that treatment with pravastatin was associated with a statistically significant reduction in the composite event rate of fatal and nonfatal MI (46 events or 6.4% for placebo versus 21 events or 2.4% for pravastatin, p=0.001). The predominant effect of pravastatin was to reduce the rate of nonfatal MI. 14.3 Primary Hypercholesterolemia (Fredrickson Types IIa and IIb) Pravastatin sodium is highly effective in reducing Total-C, LDL-C, and TG in patients with heterozygous familial, presumed familial combined, and non-familial (non-FH) forms of primary hypercholesterolemia, and mixed dyslipidemia. A therapeutic response is seen within 1 week, and the maximum response usually is achieved within 4 weeks. This response is maintained during extended periods of therapy. In addition, pravastatin sodium is effective in reducing the risk of acute coronary events in hypercholesterolemic patients with and without previous MI. A single daily dose is as effective as the same total daily dose given twice a day. In multicenter, double-blind, placebo-controlled studies of patients with primary hypercholesterolemia, treatment with pravastatin in daily doses ranging from 10 to 40 mg consistently and significantly decreased Total-C, LDL-C, TG, and Total-C/HDL-C and LDL-C/HDL-C ratios (see Table 5). In a pooled analysis of 2 multicenter, double-blind, placebo-controlled studies of patients with primary hypercholesterolemia, treatment with pravastatin at a daily dose of 80 mg (N=277) significantly decreased Total-C, LDL-C, and TG. The 25th and 75th percentile changes from baseline in LDL-C for pravastatin 80 mg were −43% and −30%. The efficacy results of the individual studies were consistent with the pooled data (see Table 5). Treatment with pravastatin sodium modestly decreased VLDL-C and pravastatin sodium across all doses produced variable increases in HDL-C (see Table 5). Table 5: Primary Hypercholesterolemia Studies: Dose Response of Pravastatin Sodium Once Daily Administration Dose Total-C LDL-C HDL-C TG Mean Percent Changes From Baseline After 8 WeeksA multicenter, double-blind, placebo-controlled study. Placebo (N = 36) −3% −4% +1% −4% 10 mg (N = 18) −16% −22% +7% −15% 20 mg (N = 19) −24% −32% +2% −11% 40 mg (N = 18) −25% −34% +12% −24% Mean Percent Changes From Baseline After 6 WeeksPooled analysis of 2 multicenter, double-blind, placebo-controlled studies. Placebo (N = 162) 0% −1% −1% +1% 80 mg (N = 277) −27% −37% +3% −19% In another clinical trial, patients treated with pravastatin in combination with cholestyramine (70% of patients were taking cholestyramine 20 or 24 g per day) had reductions equal to or greater than 50% in LDL-C. Furthermore, pravastatin attenuated cholestyramine-induced increases in TG levels (which are themselves of uncertain clinical significance). 14.4 Hypertriglyceridemia (Fredrickson Type IV) The response to pravastatin in patients with Type IV hyperlipidemia (baseline TG >200 mg/dL and LDL-C <160 mg/dL) was evaluated in a subset of 429 patients. For pravastatin-treated subjects, the median (min, max) baseline TG level was 246.0 (200.5, 349.5) mg/dL (see Table 6.) Table 6: Patients with Fredrickson Type IV Hyperlipidemia Median (25th, 75th percentile) % Change from Baseline Pravastatin 40 mg (N=429) Placebo (N=430) TG -21.1 (-34.8, 1.3) -6.3 (-23.1, 18.3) Total-C -22.1 (-27.1, -14.8) 0.2 (-6.9, 6.8) LDL-C -31.7 (-39.6, -21.5) 0.7 (-9.0, 10.0) HDL-C 7.4 (-1.2, 17.7) 2.8 (-5.7, 11.7) Non-HDL-C -27.2 (-34.0, -18.5) -0.8 (-8.2, 7.0) 14.5 Dysbetalipoproteinemia (Fredrickson Type III) The response to pravastatin in two double-blind crossover studies of 46 patients with genotype E2/E2 and Fredrickson Type III dysbetalipoproteinemia is shown in Table 7. Table 7: Patients with Fredrickson Type III Dysbetalipoproteinemia Median (min, max) % Change from Baseline Median (min, max) at Baseline (mg/dL) Median % Change (min, max) Pravastatin 40 mg (N = 20) Study 1 Total-C 386.5 (245.0, 672.0) −32.7 (−58.5, 4.6) TG 443.0 (275.0, 1299.0) −23.7 (−68.5, 44.7) VLDL-Ca 206.5 (110.0, 379.0) −43.8 (−73.1, −14.3) LDL-Ca 117.5 (80.0, 170.0) −40.8 (−63.7, 4.6) HDL-C 30.0 (18.0, 88.0) 6.4 (−45.0, 105.6) Non-HDL-C 344.5 (215.0, 646.0) −36.7 (−66.3, 5.8) a N=14 Median (min, max) at Baseline (mg/dL) Median % Change (min, max) Pravastatin 40 mg (N = 26) Study 2 Total-C 340.3 (230.1, 448.6) −31.4 (−54.5, −13.0) TG 343.2 (212.6, 845.9) −11.9 (−56.5, 44.8) VLDL-C 145.0 (71.5, 309.4) −35.7 (−74.7, 19.1) LDL-C 128.6 (63.8, 177.9) −30.3 (−52.2, 13.5) HDL-C 38.7 (27.1, 58.0) 5.0 (−17.7, 66.7) Non-HDL-C 295.8 (195.3, 421.5) −35.5 (−81.0, −13.5) 14.6 Pediatric Clinical Study A double-blind, placebo-controlled study in 214 patients (100 boys and 114 girls) with heterozygous familial hypercholesterolemia (HeFH), aged 8 to 18 years was conducted for 2 years. The children (aged 8 to 13 years) were randomized to placebo (N=63) or 20 mg of pravastatin daily (N=65) and the adolescents (aged 14 to 18 years) were randomized to placebo (N=45) or 40 mg of pravastatin daily (N=41). Inclusion in the study required an LDL-C level >95th percentile for age and sex and one parent with either a clinical or molecular diagnosis of familial hypercholesterolemia. The mean baseline LDL-C value was 239 mg/dL and 237 mg/dL in the pravastatin (range: 151 to 405 mg/dL) and placebo (range: 154 to 375 mg/dL) groups, respectively. Pravastatin significantly decreased plasma levels of LDL-C, Total-C, and ApoB in both children and adolescents (see Table 8). The effect of pravastatin treatment in the 2 age groups was similar. Table 8: Lipid-Lowering Effects of Pravastatin in Pediatric Patients with Heterozygous Familial Hypercholesterolemia: Least-Squares Mean % Change from Baseline at Month 24 (Last Observation Carried Forward: Intent-to-Treat)a Pravastatin 20 mg (Aged 8 to 13 years) N = 65 Pravastatin 40 mg (Aged 14 to 18 years) N = 41 Combined Pravastatin (Aged 8 to 18 years) N = 106 Combined Placebo (Aged 8 to 18 years) N = 108 95% CI of the Difference Between Combined Pravastatin and Placebo LDL-C −26.04b −21.07b −24.07b −1.52 (−26.74, −18.86) TC −20.75b −13.08b −17.72b −0.65 (−20.40, −13.83) HDL-C 1.04 13.71 5.97 3.13 (−1.71, 7.43) TG −9.58 −0.30 −5.88 −3.27 (−13.95, 10.01) ApoB (N) −23.16b (61) −18.08b (39) −21.11b (100) −0.97 (106) (−24.29, −16.18) The mean achieved LDL-C was 186 mg/dL (range: 67 to 363 mg/dL) in the pravastatin group compared to 236 mg/dL (range: 105 to 438 mg/dL) in the placebo group. The safety and efficacy of pravastatin doses above 40 mg daily have not been studied in children. The long-term efficacy of pravastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.
Warnings And Cautions
5 WARNINGS AND PRECAUTIONS 1.Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): predisposing factors include advanced age (≥65), uncontrolled hypothyroidism, and renal impairment. Patients should be advised to promptly report to their physician any unexplained and/or persistent muscle pain, tenderness, or weakness. Pravastatin therapy should be discontinued if myopathy is diagnosed or suspected. (5.1, 8.5) 2.Liver enzyme abnormalities: persistent elevations in hepatic transaminases can occur. Check liver enzyme tests before initiating therapy and as clinically indicated thereafter. (5.2) 5.1 Skeletal Muscle Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with pravastatin and other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects. Uncomplicated myalgia has also been reported in pravastatin-treated patients [see Adverse Reactions (6)]. Myopathy, defined as muscle aching or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values to greater than 10 times the upper limit of normal (ULN), was rare (<0.1%) in pravastatin clinical trials. Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevation of CPK. Predisposing factors include advanced age (≥65), uncontrolled hypothyroidism, and renal impairment. There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum CPK, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation and improvement with immunosuppressive agents. All patients should be advised to promptly report to their physician unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing pravastatin. Pravastatin therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. Pravastatin therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy. The risk of myopathy during treatment with statins is increased with concurrent therapy with either erythromycin, cyclosporine, niacin, or fibrates. However, neither myopathy nor significant increases in CPK levels have been observed in 3 reports involving a total of 100 post-transplant patients (24 renal and 76 cardiac) treated for up to 2 years concurrently with pravastatin 10 to 40 mg and cyclosporine. Some of these patients also received other concomitant immunosuppressive therapies. Further, in clinical trials involving small numbers of patients who were treated concurrently with pravastatin and niacin, there were no reports of myopathy. Also, myopathy was not reported in a trial of combination pravastatin (40 mg/day) and gemfibrozil (1200 mg/day), although 4 of 75 patients on the combination showed marked CPK elevations versus 1 of 73 patients receiving placebo. There was a trend toward more frequent CPK elevations and patient withdrawals due to musculoskeletal symptoms in the group receiving combined treatment as compared with the groups receiving placebo, gemfibrozil, or pravastatin monotherapy. The use of fibrates alone may occasionally be associated with myopathy. The benefit of further alterations in lipid levels by the combined use of pravastatin sodium with fibrates should be carefully weighed against the potential risks of this combination. Cases of myopathy, including rhabdomyolysis, have been reported with pravastatin coadministered with colchicine, and caution should be exercised when prescribing pravastatin with colchicine [see Drug Interactions (7.3)]. 5.2 Liver Statins, like some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. In placebo-controlled clinical trials, subjects were exposed to pravastatin or placebo [see Clinical Studies (14) ]. In an analysis of serum transaminase values (ALT, AST), incidences of marked abnormalities were compared between the pravastatin and placebo treatment groups; a marked abnormality was defined as a post-treatment test value greater than 3 times the upper limit of normal for subjects with pretreatment values less than or equal to the upper limit of normal, or 4 times the pretreatment value for subjects with pretreatment values greater than the upper limit of normal but less than 1.5 times the upper limit of normal. Marked abnormalities of ALT or AST occurred with similar low frequency (≤1.2%) in both treatment groups. Overall, clinical trial experience showed that liver function test abnormalities observed during pravastatin therapy were usually asymptomatic, not associated with cholestasis, and did not appear to be related to treatment duration. In a 320-patient placebo-controlled clinical trial, subjects with chronic (>6 months) stable liver disease, due primarily to hepatitis C or non-alcoholic fatty liver disease, were treated with 80 mg pravastatin or placebo for up to 9 months. The primary safety endpoint was the proportion of subjects with at least one ALT ≥2 times the upper limit of normal for those with normal ALT (≤ the upper limit of normal) at baseline or a doubling of the baseline ALT for those with elevated ALT (> the upper limit of normal) at baseline. By Week 36, 12 out of 160 (7.5%) subjects treated with pravastatin met the prespecified safety ALT endpoint compared to 20 out of 160 (12.5%) subjects receiving placebo. Conclusions regarding liver safety are limited since the study was not large enough to establish similarity between groups (with 95% confidence) in the rates of ALT elevation. It is recommended that liver function tests be performed prior to the initiation of therapy and when clinically indicated. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of pravastatin [see Contraindications (4.2)]. Caution should be exercised when pravastatin is administered to patients who have a recent (<6 months) history of liver disease, have signs that may suggest liver disease (e.g., unexplained aminotransferase elevations, jaundice), or are heavy users of alcohol. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including pravastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with pravastatin, promptly interrupt therapy. If an alternate etiology is not found do not restart pravastatin. 5.3 Endocrine Function Statins interfere with cholesterol synthesis and lower circulating cholesterol levels and, as such, might theoretically blunt adrenal or gonadal steroid hormone production. Results of clinical trials with pravastatin in males and post-menopausal females were inconsistent with regard to possible effects of the drug on basal steroid hormone levels. In a study of 21 males, the mean testosterone response to human chorionic gonadotropin was significantly reduced (p<0.004) after 16 weeks of treatment with 40 mg of pravastatin. However, the percentage of patients showing a ≥50% rise in plasma testosterone after human chorionic gonadotropin stimulation did not change significantly after therapy in these patients. The effects of statins on spermatogenesis and fertility have not been studied in adequate numbers of patients. The effects, if any, of pravastatin on the pituitary-gonadal axis in pre-menopausal females are unknown. Patients treated with pravastatin who display clinical evidence of endocrine dysfunction should be evaluated appropriately. Caution should also be exercised if a statin or other agent used to lower cholesterol levels is administered to patients also receiving other drugs (e.g., ketoconazole, spironolactone, cimetidine) that may diminish the levels or activity of steroid hormones. In a placebo-controlled study of 214 pediatric patients with HeFH, of which 106 were treated with pravastatin (20 mg in the children aged 8 to 13 years and 40 mg in the adolescents aged 14 to 18 years) for 2 years, there were no detectable differences seen in any of the endocrine parameters (ACTH, cortisol, DHEAS, FSH, LH, TSH, estradiol [girls] or testosterone [boys]) relative to placebo. There were no detectable differences seen in height and weight changes, testicular volume changes, or Tanner score relative to placebo.