METHADONE HCL
Analgesic Narcotic Agonists
Prices & Coupons
Pharmacy | |||
---|---|---|---|
133RD STREET PHARMACY INC
1473 Amsterdam Ave |
$6.51 |
Get Your Coupon | |
AHF PHARMACY
475 Atlantic Ave |
$6.51 |
Get Your Coupon | 1 more results found for AIDS HEALTHCARE FOUNDATION |
AHF PHARMACY
2307 Astoria Blvd |
$6.51 |
Get Your Coupon | |
ALICE RX CORP
231 S 3 Rd St |
$6.51 |
Get Your Coupon | 5 more results found for PHARMACY FIRST |
DANNY'S PHARMACY II
110 W End Ave |
$6.51 |
Get Your Coupon | |
A.M. PHARMACY II, INC
223 Grand Street |
$6.61 |
Get Your Coupon | 6 more results found for ALIGNRX (783) |
ACME PHARMACY #1083
125 18 Th St |
$6.80 |
Get Your Coupon | 1 more results found for NEW ALBERTSONS LP |
1699 FANCY PHARMACY INC
132 Allen St |
$7.11 |
Get Your Coupon | 20 more results found for ELEVATE PROVIDER NETWORK 904 |
2355 2ND AVE NYS LLC
2355 2 Nd Avenue |
$7.11 |
Get Your Coupon | |
123 PHARMACY
420 Grand Street |
$7.51 |
Get Your Coupon | 68 more results found for LEADER DRUG STORES INC |
137 MOTT PHARMACY, INC.
137 Mott St |
$7.61 |
Get Your Coupon | 10 more results found for HEALTH MART ATLAS 605 |
79TH STREET PHARMACY
215 W 79 Th St |
$7.61 |
Get Your Coupon | 14 more results found for HEALTH MART ATLAS 630 |
321 HEALTH PHARMACY
95 Bowery |
$8.11 |
Get Your Coupon | 10 more results found for EPIC PHARMACY NETWORK INC |
CARE PLUS CVS/PHARMACY #02546
1200 Harbor Blvd |
$8.11 |
Get Your Coupon | 76 more results found for CVS PHARMACY INC |
CVS PHARMACY # 17820
10 Union Sq E |
$8.11 |
Get Your Coupon | 9 more results found for CVS PHARMACY IN TARGET |
CVS PHARMACY #02919
126 Eighth Ave |
$8.11 |
Get Your Coupon | |
COMMUNITY, A WALGREENS PHARMACY #16463
29 W 116 Th St |
$12.12 |
Get Your Coupon | |
APICHA HEALTH CENTER PHARMACY
400 Broadway |
$12.61 |
Get Your Coupon | 4 more results found for MAXORXPRESS |
CHELSEA ROYAL CARE PHARMACY, INC.
154 9 Th Ave |
$12.61 |
Get Your Coupon | |
CHRONOS PHARMACY
30 96 36 Th Street |
$12.61 |
Get Your Coupon | |
COLUMBIA DRUGS
55 Columbia St |
$12.61 |
Get Your Coupon | |
CONTIGO PHARMACY
3510 Bergenline Ave |
$12.61 |
Get Your Coupon | 1 more results found for GERIMED LTC NETWORK INC |
COSTCO PHARMACY #1062
517 E 117 Th St |
$12.62 |
Get Your Coupon | 1 more results found for COSTCO PHARMACIES |
Dosage and administration
DOSAGE AND ADMINISTRATION Methadone differs from many other opioid agonists in several important ways. Methadone's pharmacokinetic properties, coupled with high interpatient variability in its absorption, metabolism, and relative analgesic potency, necessitate a cautious and highly individualized approach to prescribing. Particular vigilance is necessary during treatment initiation, during conversion from one opioid to another, and during dose titration. While methadone’s duration of analgesic action (typically 4 to 8 hours) in the setting of single-dose studies approximates that of morphine, methadone’s plasma elimination half-life is substantially longer than that of morphine (typically 8 to 59 hours vs. 1 to 5 hours). Methadone's peak respiratory depressant effects typically occur later, and persist longer than its peak analgesic effects. Also, with repeated dosing, methadone may be retained in the liver and then slowly released, prolonging the duration of action despite low plasma concentrations. For these reasons, steady-state plasma concentrations, and full analgesic effects, are usually not attained until 3 to 5 days of dosing. Additionally, incomplete cross-tolerance between mu-opioid agonists makes determination of dosing during opioid conversion complex. The complexities associated with methadone dosing can contribute to cases of iatrogenic overdose, particularly during treatment initiation and dose titration. A high degree of "opioid tolerance" does not eliminate the possibility of methadone overdose, iatrogenic or otherwise. Deaths have been reported during conversion to methadone from chronic, high-dose treatment with other opioid agonists and during initiation of methadone treatment of addiction in subjects previously abusing high doses of other agonists. Detoxification and Maintenance Treatment of Opiate Dependence For detoxification and maintenance of opiate dependence methadone should be administered in accordance with the treatment standards cited in 42 CFR Section 8.12, including limitations on unsupervised administration. Induction/Initial Dosing The initial methadone dose should be administered, under supervision, when there are no signs of sedation or intoxication, and the patient shows symptoms of withdrawal. Initially, a single dose of 20 to 30 mg of methadone will often be sufficient to suppress withdrawal symptoms. The initial dose should not exceed 30 mg. If same-day dosing adjustments are to be made, the patient should be asked to wait 2 to 4 hours for further evaluation, when peak levels have been reached. An additional 5 to 10 mg of methadone may be provided if withdrawal symptoms have not been suppressed or if symptoms reappear. The total daily dose of methadone on the first day of treatment should not ordinarily exceed 40 mg. Dose adjustments should be made over the first week of treatment based on control of withdrawal symptoms at the time of expected peak activity (e.g., 2 to 4 hours after dosing). Dose adjustment should be cautious; deaths have occurred in early treatment due to the cumulative effects of the first several days’ dosing. Patients should be reminded that the dose will “hold” for a longer period of time as tissue stores of methadone accumulate. Initial doses should be lower for patients whose tolerance is expected to be low at treatment entry. Loss of tolerance should be considered in any patient who has not taken opioids for more than 5 days. Initial doses should not be determined by previous treatment episodes or dollars spent per day on illicit drug use. For Short-Term Detoxification For patients preferring a brief course of stabilization followed by a period of medically supervised withdrawal, it is generally recommended that the patient be titrated to a total daily dose of about 40 mg in divided doses to achieve an adequate stabilizing level. Stabilization can be continued for 2 to 3 days, after which the dose of methadone should be gradually decreased. The rate at which methadone is decreased should be determined separately for each patient. The dose of methadone can be decreased on a daily basis or at 2-day intervals, but the amount of intake should remain sufficient to keep withdrawal symptoms at a tolerable level. In hospitalized patients, a daily reduction of 20% of the total daily dose may be tolerated. In ambulatory patients, a somewhat slower schedule may be needed. For Maintenance Treatment Patients in maintenance treatment should be titrated to a dose at which opioid symptoms are prevented for 24 hours, drug hunger or craving is reduced, the euphoric effects of self-administered opioids are blocked or attenuated, and the patient is tolerant to the sedative effects of methadone. Most commonly, clinical stability is achieved at doses between 80 to 120 mg/day. For Medically Supervised Withdrawal After a Period of Maintenance Treatment There is considerable variability in the appropriate rate of methadone taper in patients choosing medically supervised withdrawal from methadone treatment. It is generally suggested that dose reductions should be less than 10% of the established tolerance or maintenance dose, and that 10 to 14-day intervals should elapse between dose reductions. Patients should be apprised of the high risk of relapse to illicit drug use associated with discontinuation of methadone maintenance treatment.
|
Pregnancy
Pregnancy Teratogenic Effects Pregnancy Category C There are no controlled studies of methadone use in pregnant women that can be used to establish safety. However, an expert review of published data on experiences with methadone use during pregnancy by the Teratogen Information System (TERIS) concluded that maternal use of methadone during pregnancy as part of a supervised, therapeutic regimen is unlikely to pose a substantial teratogenic risk (quantity and quality of data assessed as “limited to fair”). However, the data are insufficient to state that there is no risk (TERIS, last reviewed October, 2002). Pregnant women involved in methadone maintenance programs have been reported to have significantly improved prenatal care leading to significantly reduced incidence of obstetric and fetal complications and neonatal morbidity and mortality when compared to women using illicit drugs. Several factors complicate the interpretation of investigations of the children of women who take methadone during pregnancy. These include the maternal use of illicit drugs, other maternal factors such as nutrition, infection, and psychosocial circumstances, limited information regarding dose and duration of methadone use during pregnancy, and the fact that most maternal exposure appears to occur after the first trimester of pregnancy. Reported studies have generally compared the benefit of methadone to the risk of untreated addiction to illicit drugs. Methadone has been detected in amniotic fluid and cord plasma at concentrations proportional to maternal plasma and in newborn urine at lower concentrations than corresponding maternal urine. A retrospective series of 101 pregnant, opiate-dependent women who underwent inpatient opiate detoxification with methadone did not demonstrate any increased risk of miscarriage in the second trimester or premature delivery in the third trimester. Several studies have suggested that infants born to narcotic-addicted women treated with methadone during all or part of pregnancy have been found to have decreased fetal growth with reduced birth weight, length, and/or head circumference compared to controls. This growth deficit does not appear to persist into later childhood. However, children born to women treated with methadone during pregnancy have been shown to demonstrate mild but persistent deficits in performance on psychometric and behavioral tests. Additional information on the potential risks of methadone may be derived from animal data. Methadone does not appear to be teratogenic in the rat or rabbit models. However, following large doses, methadone produced teratogenic effects in the guinea pig, hamster and mouse. One published study in pregnant hamsters indicated that a single subcutaneous dose of methadone ranging from 31 to 185 mg/kg (the 31 mg/kg dose is approximately 2 times a human daily oral dose of 120 mg/day on a mg/m2 basis) on day 8 of gestation resulted in a decrease in the number of fetuses per litter and an increase in the percentage of fetuses exhibiting congenital malformations described as exencephaly, cranioschisis, and “various other lesions.” The majority of the doses tested also resulted in maternal death. In another study, a single subcutaneous dose of 22 to 24 mg/kg methadone (estimated exposure was approximately equivalent to a human daily oral dose of 120 mg/day on a mg/m2 basis) administered on day 9 of gestation in mice also produced exencephaly in 11% of the embryos. However, no effects were reported in rats and rabbits at oral doses up to 40 mg/kg (estimated exposure was approximately 3 and 6 times, respectively, a human daily oral dose of 120 mg/day on a mg/m2 basis) administered during days 6 to 15 and 6 to 18, respectively. Nonteratogenetic Effects Babies born to mothers who have been taking opioids regularly prior to delivery may be physically dependent. Onset of withdrawal symptoms in infants is usually in the first days after birth. Withdrawal signs in the newborn include irritability and excessive crying, tremors, hyperactive reflexes, increased respiratory rate, increased stools, sneezing, yawning, vomiting, and fever. The intensity of the syndrome does not always correlate with the maternal dose or the duration of maternal exposure. The duration of the withdrawal signs may vary from a few days to weeks or even months. There is no consensus on the appropriate management of infant withdrawal. There are conflicting reports on whether SIDS occurs with an increased incidence in infants born to women treated with methadone during pregnancy. Abnormal fetal nonstress tests (NSTs) have been reported to occur more frequently when the test is performed 1 to 2 hours after a maintenance dose of methadone in late pregnancy compared to controls. Published animal data have reported increased neonatal mortality in the offspring of male rats that were treated with methadone prior to mating. In these studies, the female rats were not treated with methadone, indicating paternally-mediated developmental toxicity. Specifically, methadone administered to the male rat prior to mating with methadone-naïve females resulted in decreased weight gain in progeny after weaning. The male progeny demonstrated reduced thymus weights, whereas the female progeny demonstrated increased adrenal weights. Furthermore, behavioral testing of these male and female progeny revealed significant differences in behavioral tests compared to control animals, suggesting that paternal methadone exposure can produce physiological and behavioral changes in progeny in this model. Other animal studies have reported that perinatal exposure to opioids including methadone alters neuronal development and behavior in the offspring. Perinatal methadone exposure in rats has been linked to alterations in learning ability, motor activity, thermal regulation, nociceptive responses and sensitivity to drugs. Additional animal data demonstrates evidence for neurochemical changes in the brains of methadone-treated offspring, including changes to the cholinergic, dopaminergic, noradrenergic and serotonergic systems. Additional studies demonstrated that methadone treatment of male rats for 21 to 32 days prior to mating with methadone-naïve females did not produce any adverse effects, suggesting that prolonged methadone treatment of the male rat resulted in tolerance to the developmental toxicities noted in the progeny. Mechanistic studies in this rat model suggest that the developmental effects of “paternal” methadone on the progeny appear to be due to decreased testosterone production. These animal data mirror the reported clinical findings of decreased testosterone levels in human males on methadone maintenance therapy for opioid addiction and in males receiving chronic intraspinal opioids. Clinical Pharmacology in Pregnancy Pregnant women appear to have significantly lower trough plasma methadone concentrations, increased plasma methadone clearance, and shorter methadone half-life than after delivery. Dosage adjustment using higher doses or administering the daily dose in divided doses may be necessary in pregnant women treated with methadone. (See CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION). Methadone should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Drug Interactions
Drug Interactions (see PRECAUTIONS : Drug Interactions) Methadone undergoes hepatic N-demethylation by cytochrome P-450 isoforms, principally CYP3A4, CYP2B6, CYP2C19, and to a lesser extent by CYP2C9 and CYP2D6. Coadministration of methadone with inducers of these enzymes may result in more rapid methadone metabolism, and potentially, decreased effects of methadone. Conversely, administration with CYP inhibitors may reduce metabolism and potentiate methadone’s effects. Pharmacokinetics of methadone may be unpredictable when coadministered with drugs that are known to both induce and inhibit CYP enzymes. Although antiretroviral drugs such as efavirenz, nelfinavir, nevirapine, ritonavir, lopinavir+ritonavir combination are known to inhibit some CYPs, they are shown to reduce the plasma levels of methadone, possibly due to their CYP induction activity. Therefore, drugs administered concomitantly with methadone should be evaluated for interaction potential; clinicians are advised to evaluate individual response to drug therapy before making a dosage adjustment. and Drug Interactions In vitro results suggest that methadone undergoes hepatic N-demethylation by cytochrome P450 enzymes, principally CYP3A4, CYP2B6, CYP2C19, and to a lesser extent by CYP2C9 and CYP2D6. Coadministration of methadone with inducers of these enzymes may result in a more rapid metabolism and potential for decreased effects of methadone, whereas administration with CYP inhibitors may reduce metabolism and potentiate methadone’s effects. Although antiretroviral drugs such as efavirenz, nelfinavir, nevirapine, ritonavir, lopinavir+ritonavir combination are known to inhibit CYPs, they are shown to reduce the plasma levels of methadone, possibly due to their CYP induction activity. Therefore, drugs administered concomitantly with methadone should be evaluated for interaction potential; clinicians are advised to evaluate individual response to drug therapy.
Indications And Usage
INDICATIONS AND USAGE 1.For detoxification treatment of opioid addiction (heroin or other morphine-like drugs). 2.For maintenance treatment of opioid addiction (heroin or other morphine-like drugs), in conjunction with appropriate social and medical services.